Cell patterning with mucin biopolymers.

نویسندگان

  • T Crouzier
  • H Jang
  • J Ahn
  • R Stocker
  • K Ribbeck
چکیده

The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterning of polar active filaments on a tense cylindrical membrane.

We study the dynamics and patterning of polar contractile filaments on the surface of a cylindrical cell using active hydrodynamic equations that incorporate couplings between curvature and filament orientation. Cables and rings spontaneously emerge as steady state configurations on the cylinder, and can be stationary or moving, helical or tilted segments moving along helical trajectories. We o...

متن کامل

Mucin biopolymers as broad-spectrum antiviral agents.

Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural compon...

متن کامل

Olof Svensson Interactions of Mucins with Biopolymers and Drug Delivery Particles

............................................................................... 10 LIST OF PAPERS ......................................................................... 12 INTRODUCTION ......................................................................... 14 Background and aim ............................................................................ 14 The mucous gel and mucins ..........

متن کامل

Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3)

Objective(s): As T-cell immunoglobulin and mucin domain 3 (TIM-3) is an immune regulatory molecule; its blocking or stimulating could alter the pattern of immune response towards a desired condition. Based on the unique features of nanobodies, we aimed to construct an anti-TIM-3 nanobody as an appropriate tool for manipulating immune responses for future therapeutic purposes. Materials and Meth...

متن کامل

سلول‌های خورشیدی حساس شده با رنگ با الکترولیت‌های ژلی کیتوسان و کربوکسی متیل سلولز

In this work, chitosan and carboxy methyl cellulose biopolymers were used as gelling agents in composition of electrolyte of dye sensitized solar cells. The effect of both biopolymers on performance of dye sensitized solar cell were investigated by adding the same amounts of two biopolymers to the liquid electrolytes composed of ox/red couple of I-/I3- with similar concentrations. The electroch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 2013